PlantMWpIDB: a database of molecular weights and isoelectric points of plant proteomes

Mohanta, TK, Khan, AL, Hashem, A., Abd Allah, EF & Al-Harrasi, A. The molecular mass and isoelectric point of plant proteomes. BMC Genom. 20631 (2019).
Mohanta, TK et al. Virtual 2D map of the fungal proteome. Science. representing 116676 (2021).
Uversky, VN In Post-translational modification (eds Maloy, S. & Hughes, KBT) 425–430 (Academic Press, 2013). https://doi.org/10.1016/B978-0-12-374984-0.01203-1.
Sun, q. et al. PPDB, the plant proteomics database at cornell. Nucleic Acids Res. 37D969–D974 (2009).
Mohanta, T., Syed, A., Ameen, F. & Bae, H. New genomic and evolutionary perspective of cyanobacterial tRNAs. Before. Broom. 8200 (2017).
Ochsenreiter, T., Cipriano, M. & Hajduk, SL Alternative mRNA editing in trypanosomes is important and may contribute to mitochondrial protein diversity. PLOS ONE 3e1566 (2008).
Reid, DW & Nicchitta, CV Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 16221-231 (2015).
Livingstone, M., Atas, E., Meller, A. & Sonenberg, N. Mechanisms governing the control of mRNA translation. Phys. Biol. 721001 (2010).
Li, X. et al. Quantitative approach of chemical proteomics to identify protein-protein interactions induced by post-translational modification. Jam. Chem. Soc. 1341982-1985 (2012).
Eisenhaber, BE Post-translational modifications and subcellular localization signals: indicators of sequence regions without inherent 3D structure?. Fluent. Sci protein peptide. 8197–203 (2007).
Finkemeier, I., Laxa, M., Miguet, L., Howden, AJM, and Sweetlove, LJ Proteins of various subcellular functions and locations are acetylated by lysine in Arabidopsis. Plant Physics. 1551779–1790 (2011).
Wolf, S., Lucas, WJ, Deom, CM & Beachy, RN Tobacco mosaic virus movement protein alters plasmodesmatous size exclusion limit. Science 246377–379 (1989).
Ivankov, D.N. et al. Contact order revisited: Influence of protein size on folding rate. Sci protein. 122057-2062 (2003).
Hishigaki, H., Nakai, K., Ono, T., Tanigami, A. & Takagi, T. Assessing the accuracy of protein function prediction from protein-protein interaction data. Yeast 18523–531 (2001).
Kudlow, JE Post-translational modification by O-GlcNAc: another way to modify protein function. J. Cell. Biochemistry. 981062-1075 (2006).
Belizaire, R. & Unanue, ER Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. proc. Natl. Acad. Science. 10617463–17468 (2009).
Park, D., Choi, SS & Ha, K.-S. Transglutaminase 2: A multifunctional protein in multiple subcellular compartments. Amino acids 39619-631 (2010).
Ugo, P., Marafini, P. & Meneghello, M. List of symbols 21–22 (De Gruyter, 2021). https://doi.org/10.1515/9783110589160-206.
Erickson, HP Kinetics of protein-protein association and dissociation. Principles of protein-protein association 5–8 (2019) doi: https://doi.org/10.1088/2053-2563/ab19bach8.
Wu, YC, Koch, WF, Berezansky, PA & Holland, LA Amino acid dissociation constant by conductometric method: I. pK1 of MOPSO-HCl at 25°C. J.Solution Chem. 21597–605 (1992).
Das, RK, Crick, SL & Pappu, RV N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. J.Mol. Biol. 416287–299 (2012).
Vamvaca, K., Volles, MJ & Lansbury, PT The first N-terminal amino acids of α-synuclein are essential for in vitro α-helical structure formation and membrane binding in yeast. J.Mol. Biol. 389413–424 (2009).
Requiao, DR et al. Distribution of protein charge in proteomes and its impact on translation. PLOS calculation. Biol. 13e1005549 (2017).
von Heijne, G. Net NC charge imbalance may be important for signal sequence function in bacteria. J.Mol. Biol. 192287–290 (1986).
von Heijne, G. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EBO J. 32315–2318 (1984).
Dinçbas-Renqvist, V. et al. A post-translational modification of the GGQ motif of Escherichia coli RF2 stimulates translational arrest. EBO J. 196900–6907 (2000).
Phelps, DS, Floros, J. & Taeusch, HW Jr. Post-translational modification of major human surfactant-associated proteins. Biochemistry. J 237373–377 (1986).
Aitken, A. Post-translational modification of 14-3-3 isoforms and regulation of cell function. Semin. Dev cell. Biol. 22673–680 (2011).
Nussinov, R., Tsai, C.-J., Xin, F. & Radivojac, P. Allosteric post-translational modification codes. Biochem Trends. Science. 37447–455 (2012).
Zhang, L. et al. Towards post-translational modification of the royal jelly proteome. J. Proteom. 755327–5341 (2012).
Li, F.-ML Prediction of the subcellular location of proteins using pseudo-amino acid composition of cabbage and an improved hybrid approach. Lett protein peptide. 15612–616 (2008).
Park, K.-J. & Kanehisa, M. Prediction of subcellular locations of proteins by support vector machines using amino acid and amino acid pair compositions. Bioinformatics 191656-1663 (2003).
Pierleoni, A., Martelli, PL, Fariselli, P. & Casadio, R. eSLDB: Eukaryotic Subcellular Localization Database. Nucleic Acids Res. 35D208–D212 (2007).
Rastogi, S. & Rost, B. LocDB: Experimental localization annotations for Homo sapiens and Arabidopsis thaliana. Nucleic Acids Res. 39D230–D234 (2011).
Negi, S., Pandey, S., Srinivasan, SM, Mohammed, A. & Guda, C. LocSigDB: a database of protein localization signals. Database 20152 (2015).
Guo, X., Liu, F., Ju, Y., Wang, Z., and Wang, C. Subcellular localization of human proteins with integrated source and multi-tag ensemble classifier. Science. representing 628087 (2016).
Orre, LM et al. SubCellBarCode: Proteome-wide mapping of protein localization and relocalization. Mol. Cell 73166-182.e7 (2019).
Wan, S., Mak, M.-W. & Kung, S.-Y. mGOASVM: Subcellular localization of multi-tag proteins based on gene ontology and supporting vector machines. BMC Bioinform. 13290 (2012).
Bunkute, E. et al. PIP-DB: The Protein Isoelectric Point Database. Bioinformatics 31295-296 (2015).
Kozlowski, LP Proteome-pI: Proteome Isoelectric Point Database. Nucleic Acids Res. 45D1112–D1116 (2017).
Kozlowski, LP IPC — isoelectric point calculator. Biol. Direct 1155 (2016).
Kozlowski, LP Proteome-pI 2.0: Proteome isoelectric point database update. Nucleic Acids Res. 50D1535–D1540 (2022).
Su, B., Qian, Z., Li, T., Zhou, Y. & Wong, A. PlantMP: A Database for Dark Plant Proteins. Database 20192 (2019).
Brown, JWS, Shaw, PJ, Shaw, P. & Marshall, DF Arabidopsis Nucleolar Protein Database (AtNoPDB). Nucleic Acids Res. 33D633–D636 (2005).
Na Ayutthaya, PP, Lundberg, D., Weigel, D. & Li, L. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for the analysis of protein oligomers in plants. Fluent. Biol Plant Protocol. 5e20107 (2020).
Lee, PY, Saraygord-Afshari, N. & Low, TY The evolution of two-dimensional gel electrophoresis – from proteomics to emerging alternative applications. J. Chromatogr. A 1615460763 (2020).
Toledo Silva, SH, Bader-Mittermaier, S., Silva, LB, Doer, G. & Eisner, P. Electrophoretic characterization, amino acid composition, and solubility properties of Macauba (Acrocomia aculeata L.) nucleus globulins. Food bioscience. 40100908 (2021).